Deep Attention-based Supernovae Classification of Multiband Light Curves

Author:

Pimentel Óscar,Estévez Pablo A.ORCID,Förster FranciscoORCID

Abstract

Abstract In astronomical surveys, such as the Zwicky Transient Facility, supernovae (SNe) are relatively uncommon objects compared to other classes of variable events. Along with this scarcity, the processing of multiband light curves is a challenging task due to the highly irregular cadence, long time gaps, missing values, few observations, etc. These issues are particularly detrimental to the analysis of transient events: SN-like light curves. We offer three main contributions: (1) Based on temporal modulation and attention mechanisms, we propose a deep attention model (TimeModAttn) to classify multiband light curves of different SN types, avoiding photometric or hand-crafted feature computations, missing-value assumptions, and explicit imputation/interpolation methods. (2) We propose a model for the synthetic generation of SN multiband light curves based on the Supernova Parametric Model, allowing us to increase the number of samples and the diversity of cadence. Thus, the TimeModAttn model is first pretrained using synthetic light curves. Then, a fine-tuning process is performed. The TimeModAttn model outperformed other deep learning models, based on recurrent neural networks, in two scenarios: late-classification and early-classification. Also, the TimeModAttn model outperformed a Balanced Random Forest (BRF) classifier (trained with real data), increasing the balanced-F 1score from ≈.525 to ≈.596. When training the BRF with synthetic data, this model achieved a similar performance to the TimeModAttn model proposed while still maintaining extra advantages. (3) We conducted interpretability experiments. High attention scores were obtained for observations earlier than and close to the SN brightness peaks. This also correlated with an early highly variability of the learned temporal modulation.

Funder

Millennium Institute of Astrophysics

ANID ∣ Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3