Polarization-based Speckle Nulling Using a Spatial Light Modulator to Generate a Wide-field Dark Hole

Author:

Murakami NaoshiORCID,Yoneta KentaORCID,Kawai Kenya,Kawahara HajimeORCID,Kotani TakayukiORCID,Tamura MotohideORCID,Baba NaoshiORCID

Abstract

Abstract Direct detection of exoplanets requires a high-contrast instrument called a coronagraph to reject bright light from the central star. However, a coronagraph cannot perfectly reject the starlight if the incoming stellar wave front is distorted by aberrations due to the Earth’s atmospheric turbulence and/or the telescope instrumental optics. Wave-front aberrations cause residual stellar speckles that prevent detection of faint planetary light. In this paper, we report a laboratory demonstration of a speckle-nulling wave-front control using a spatial light modulator (SLM) to suppress the residual speckles of a common-path visible nulling coronagraph. Because of its large format, the SLM potentially has the ability to generate a dark hole over a large region or at a large angular distance from a star of up to hundreds of λ/D. We carry out a laboratory demonstration for three cases of dark hole generation: (1) in an inner region (3–8 λ/D in horizontal and 5–15 λ/D in vertical directions), (2) in an outer region (70–75 λ/D in horizontal and 65–75 λ/D in vertical directions), and (3) in a large region (5–75 λ/D in both directions). As a result, the residual speckles are rejected to contrast levels on the order of 10−8 in cases 1 and 2. In cases 2 and 3, we can generate dark holes at a large distance (up to >100 λ/D) and with a large size (70 λ/D square), both of which are out of the Nyquist limit of currently available deformable mirrors.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of rotating target on speckle and orbital angular momentum characteristics of vector vortex beams;Optical Engineering;2023-04-03

2. Binary-star Wave Front Control Based on a Common-path Visible Nulling Coronagraph;The Astrophysical Journal Supplement Series;2022-09-30

3. Recent progress of the facility for coronagraphic elemental technologies (FACET);Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave;2022-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3