Abstract
Abstract
A prototype spectrograph using a Virtually Imaged Phased Array (VIPA) as the main dispersion element is presented, and its performance is fully examined in our laboratory. The single-mode, fiber-fed spectrograph with simultaneous wavelength calibration possesses a spectral resolution well in excess of
while the size of the VIPA is several orders of magnitude smaller than that of a conventional échelle with comparable resolution. In laboratory tests, the VIPA-based instrument with a homemade Yb:fiber ring laser frequency comb demonstrates a mode-to-mode tracking stability of 41 cm s−1 over a period of 6 hr. The VIPA spectrograph has promising applications in various astronomical observations in which ultra-high resolution and calibration precision are imperative, such as solar physics research, exoplanet searching with the radial velocity method, and O2 detection in the atmosphere of Earth-like planets. Ultimately, feasible optimizations for night-sky observations under seeing limited conditions are discussed.
Funder
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献