ACCESS, LRG-BEASTS, and MOPSS: Featureless Optical Transmission Spectra of WASP-25b and WASP-124b

Author:

McGruder Chima D.ORCID,López-Morales MercedesORCID,Kirk JamesORCID,Rackham Benjamin V.ORCID,May ErinORCID,Ahrer Eva-MariaORCID,King George W.ORCID,Alam Munazza K.ORCID,Allen Natalie H.ORCID,Ceballos Kevin OrtizORCID,Espinoza NéstorORCID,Gardner TylerORCID,Jordán AndrésORCID,Meyer Kelly,Monnier John D.ORCID,Osip David J.ORCID,Wheatley Peter J.ORCID

Abstract

Abstract We present new optical transmission spectra for two hot Jupiters: WASP-25b (M = 0.56 M J ; R = 1.23 R J ; P = 3.76 days) and WASP-124b (M = 0.58 M J ; R = 1.34 R J ; P = 3.37 days), with wavelength coverages of 4200–9100 Å and 4570–9940 Å, respectively. These spectra are from the ESO Faint Object Spectrograph and Camera (v.2) mounted on the New Technology Telescope and Inamori-Magellan Areal Camera & Spectrograph on Magellan Baade. No strong spectral features were found in either spectra, with the data probing 4 and 6 scale heights, respectively. Exoretrievals and PLATON retrievals favor stellar activity for WASP-25b, while the data for WASP-124b did not favor one model over another. For both planets the retrievals found a wide range in the depths where the atmosphere could be optically thick (∼0.4 μ–0.2 bars for WASP-25b and 1.6 μ–32 bars for WASP-124b) and recovered a temperature that is consistent with the planets’ equilibrium temperatures, but with wide uncertainties (up to ±430 K). For WASP-25b, the models also favor stellar spots that are ∼500–3000 K cooler than the surrounding photosphere. The fairly weak constraints on parameters are owing to the relatively low precision of the data, with an average precision of 840 and 1240 ppm per bin for WASP-25b and WASP-124b, respectively. However, some contribution might still be due to an inherent absence of absorption or scattering in the planets’ upper atmospheres, possibly because of aerosols. We attempt to fit the strength of the sodium signals to the aerosol–metallicity trend proposed by McGruder et al., and find WASP-25b and WASP-124b are consistent with the prediction, though their uncertainties are too large to confidently confirm the trend.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3