Characterizing and Mitigating Telluric Absorption in Precise Radial Velocities. II. A Study of an M2-type Star

Author:

Latouf NatashaORCID,Wang Sharon XuesongORCID,Cale BrysonORCID,Plavchan PeterORCID

Abstract

Abstract Telluric absorption lines impact the measuring of precise radial velocities (RVs) from high-resolution ground-based spectrographs. In this paper, we simulate the dependence of this impact on stellar spectral type and extend the work of the first paper in this series, which studied a G-type star, to a synthetic M-dwarf star. We quantify the bias in precise RV measurements in the visible and near-infrared (NIR) from the presence of tellurics in a simulated set of observations. We find that M-dwarf RVs are more impacted by tellurics compared to G-type stars. Specifically, for an M-dwarf star, tellurics can induce RV errors of up to 16 cm s−1 in the red optical and in excess of 220 cm s−1 in the NIR. For a G dwarf, the comparable RV systematics are 3 cm s−1 in the red optical and 240 cm s−1 in the NIR. We attribute this relative increase for M-dwarf stars to the increased concordance in wavelength between telluric lines and stellar Doppler information content. We compare the results of our simulation to data collected for Barnard’s star from the iSHELL spectrograph at the NASA Infrared Telescope Facility. This study was conducted as a follow-up to the NASA probe mission concept study EarthFinder.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The CARMENES search for exoplanets around M dwarfs;Astronomy & Astrophysics;2023-12

2. A linearized approach to radial velocity extraction;Monthly Notices of the Royal Astronomical Society;2023-09-11

3. On the importance of disc chemistry in the formation of protoplanetary disc rings;Monthly Notices of the Royal Astronomical Society;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3