The Role of Early Giant-planet Instability in Terrestrial Planet Formation

Author:

Nesvorný DavidORCID,Roig Fernando V.ORCID,Deienno RogerioORCID

Abstract

Abstract The terrestrial planets are believed to have formed by violent collisions of tens of lunar- to Mars-size protoplanets at time t < 200 Myr after the protoplanetary gas disk dispersal (t 0). The solar system giant planets rapidly formed during the protoplanetary disk stage and, after t 0, radially migrated by interacting with outer disk planetesimals. An early (t < 100 Myr) dynamical instability is thought to have occurred with Jupiter having gravitational encounters with a planetary-size body, jumping inward by ∼0.2–0.5 au, and landing on its current, mildly eccentric orbit. Here we investigate how the giant-planet instability affected the formation of the terrestrial planets. We study several instability cases that were previously shown to match many solar system constraints. We find that resonances with giant planets help to remove solids available for accretion near ∼1.5 au, thus stalling the growth of Mars. It does not matter, however, whether the giant planets are placed on their current orbits at t 0 or whether they realistically evolve in one of our instability models; the results are practically the same. The tight orbital spacing of Venus and Earth is difficult to reproduce in our simulations, including cases where bodies grow from a narrow annulus at 0.7–1 au, because protoplanets tend to spread radially during accretion. The best results are obtained in the narrow-annulus model when protoplanets emerging from the dispersing gas nebula are assumed to have (at least) the mass of Mars. This suggests efficient accretion of the terrestrial protoplanets during the first ∼10 Myr of the solar system.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3