Abstract
Abstract
Stellar activity interferes with precise radial velocity measurements and limits our ability to detect and characterize planets, in particular Earth-like planets. We introduce AESTRA (Auto-Encoding STellar Radial-velocity and Activity), a deep-learning method for precise radial velocity measurements. It combines a spectrum autoencoder, which learns to create realistic models of the star’s rest-frame spectrum, and a radial-velocity estimator, which learns to identify true Doppler shifts in the presence of spurious shifts due to line-profile variations. Being self-supervised, AESTRA does not need “ground truth” radial velocities for training, making it applicable to exoplanet host stars for which the truth is unknown. In tests involving 1000 simulated spectra, AESTRA can detect planetary signals as low as 0.1 m s−1 even in the presence of 3 m s−1 of activity-induced noise and 0.3 m s−1 of photon noise per spectrum.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献