Three-dimensional MHD Simulations of the Magnetic Pileup at Mars

Author:

Wang M.ORCID,Guan Z. J.,Xie L.,Lu J. Y.ORCID,Xu X.,Wei Y.ORCID,Zhou Z.ORCID,Chai L.ORCID,Wang J.,Chang Q.ORCID,Zhang H. X.ORCID,Qu B. H.,Sui H. Y.,Zhang J. Q.,Qiao F. H.,Li L.

Abstract

Abstract In this study, we introduced a quantitative parameter, the magnetic field strength difference, to denote the intensity of the magnetic pileup effect at Mars. Using a three-dimensional multispecies MHD model, the effects of the interplanetary magnetic field (IMF) and the solar wind dynamic pressure (P d ) constituted with different densities and velocities on the magnetic pileup were examined. Our results show that: (1) the magnetic pileup at Mars mainly occurs at the dayside region and its magnitude is generally decreasing with increasing solar zenith angle. The magnetic pileup is generally weak in the intense crustal field region, while it is strong in the weak crustal field region. (2) The perpendicular IMF components, B Y and B Z , dominate the magnetic pileup, while the radial IMF component, B X , has little effect. In the intense crustal field region, when the IMF and crustal field are primarily in the same direction, the magnetic field is piled up and the pileup magnitude is generally strong. While the directions of the crustal field and IMF are opposite, the occurrence of magnetic reconnection can weaken the local magnetic pileup. (3) Under the same P d , a higher solar wind velocity results in a higher intensity and a larger region of the magnetic pileup. When P d increases, the magnitude of the magnetic pileup is enhanced, but the pileup region shrinks. In addition, for an increasing P d , at the center of the induced magnetotail, the asymmetric current sheet can lead to similar asymmetries of the pileup.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3