Identifying Exoplanet Candidates Using WaveCeptionNet

Author:

Liao HuipingORCID,Ren Guangyue,Chen Xinghao,Li YuxiangORCID,Li GuangweiORCID

Abstract

Abstract In this study, we propose a wavelet-transform-based light curve representation method and a CNN model based on Inception-v3 for fast classification of light curves, enabling the quick discovery of potentially interesting targets from massive data. Experimental results on real observation data from the TESS showed that our wavelet processing method achieved about a 32-fold dimension reduction, while largely removing noise. We fed the wavelet-decomposed components of light curves into our improved Inception-v3 CNN model, achieving an accuracy of about 95%. Furthermore, our model achieves F1-scores of 95.63%, 95.93%, 95.65%, and 89.60% for eclipsing binaries, planet candidates, variable stars, and instrument noise, respectively. The precision rate of planet candidates identification reaches 96.49%, and the recall rate reaches 95.38% in the test set. The results demonstrate the effectiveness of our method for light curve.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3