The Epoch of Giant Planet Migration Planet Search Program. I. Near-infrared Radial Velocity Jitter of Young Sun-like Stars

Author:

Tran Quang H.ORCID,Bowler Brendan P.ORCID,Cochran William D.ORCID,Endl MichaelORCID,Stefánsson GumundurORCID,Mahadevan SuvrathORCID,Ninan Joe P.ORCID,Bender Chad F.ORCID,Halverson SamuelORCID,Roy ArpitaORCID,Terrien Ryan C.ORCID

Abstract

Abstract We present early results from the Epoch of Giant Planet Migration program, a precise radial velocity (RV) survey of more than 100 intermediate-age (∼20–200 Myr) G and K dwarfs with the Habitable Zone Planet Finder spectrograph (HPF) at McDonald Observatory’s Hobby–Eberly Telescope. The goals of this program are to determine the timescale and dominant physical mechanism of giant planet migration interior to the water ice line of Sun-like stars. Here, we summarize results from the first 14 months of this program, with a focus on our custom RV pipeline for HPF, a measurement of the intrinsic near-infrared RV activity of young Solar analogs, and modeling the underlying population-level distribution of stellar jitter. We demonstrate on-sky stability at the sub-2 m s−1 level for the K2 standard HD 3765 using a least-squares matching method to extract precise RVs. Based on a subsample of 29 stars with at least three RV measurements from our program, we find a median rms level of 34 m s−1. This is nearly a factor of 2 lower than the median rms level in the optical of 60 m s−1 for a comparison sample with similar ages and spectral types as our targets. The observed near-infrared jitter measurements for this subsample are well reproduced with a log-normal parent distribution with μ = 4.15 and σ = 1.02. Finally, by compiling rms values from previous planet search programs, we show that near-infrared jitter for G and K dwarfs generally decays with age in a similar fashion to optical wavelengths, albeit with a shallower slope and lower overall values for ages ≲1 Gyr.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3