Dynamical Structures under Nonrestricted Hierarchical Planetary Systems with Different Mass Ratios

Author:

Huang XiuminORCID,Lei HanlunORCID

Abstract

Abstract Secular dynamics have been extensively studied in both the inner and outer restricted hierarchical three-body systems. In the inner restricted problem, the quadrupole-order resonance (i.e., the well-known Kozai resonance) causes large coupled oscillations of eccentricity and inclination when the maximum inclination is higher than 39.2°, and the octupole-order resonance leads to the behavior of orbital flips. In the outer restricted problem, the behavior of orbital flips is due to the quadrupole-order resonance. Secular dynamics under the inner and outer restricted systems are distinctly different. The mass ratio of inner and outer bodies could change the ratio of circular orbital angular momenta β, which significantly influences dynamical structures of the system. But this influence is still unclear. In this paper, we focus on nonrestricted hierarchical planetary systems where β > 1 and investigate the secular dynamics by changing mass ratios. Dynamical structures are systematically explored from four aspects: periodic orbits, secular resonances, orbital flips, and chaos detection. We find that (a) it tends to lead to more bifurcations in the host family of prograde periodic orbits associated with Kozai resonance with smaller β; (b) with the decrease of β, fewer orbits inside the octupole-order resonance can realize flip; (c) for given initial conditions, the forbidden region appears in the retrograde region and becomes larger as β decreases, meaning that the mutual inclination cannot reach a very high value if β is small; and (d) chaotic orbits are distributed in the low-eccentricity, high-inclination region when β > 1.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3