ALMA Data Cubes and Continuum Maps of the Irradiated Western Wall in Carina

Author:

Hartigan PatrickORCID,Hummel Maxwell,Isella AndreaORCID,Downes TurloughORCID

Abstract

Abstract We present Atacama Large Millimeter/submillimeter Array observations of the continuum and line emission of 12CO, 13CO, C18O, and [C i] for a portion of the G287.38-0.62 (Car 1-E) region in the Carina star-forming complex. The new data record how a molecular cloud responds on subarcsecond scales when subjected to a powerful radiation front, and provide insights into the overall process of star formation within regions that contain the most-massive young stars. The maps show several molecular clouds superpose upon the line of sight, including a portion of the Western Wall, a highly irradiated cloud situated near the young star cluster Trumpler 14. In agreement with theory, there is a clear progression from fluoresced H2, to [C i], to C18O with distance into the photodissociation region (PDR) front. Emission from optically thick 12CO extends across the region, while 13CO, [C i] and especially C18O are more optically thin, and concentrate into clumps and filaments closer to the PDR interface. Within the Western Wall cloud itself we identify 254 distinct core-sized clumps in our data cube of C18O. The mass distribution of these objects is similar to that of the stellar initial mass function. Aside from a large-scale velocity gradient, the clump radial velocities lack any spatial coherence size. There is no direct evidence for triggering of star formation in the Western Wall in that its C18O clumps and continuum cores appear starless, with no pillars present. However, the densest portion of the cloud lies closest to the PDR, and the C18O emission is flattened along the radiation front.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3