Abstract
Abstract
We present a comprehensive orbital analysis to the exoplanets β Pictoris b and c that resolves previously reported tensions between the dynamical and evolutionary mass constraints on β Pic b. We use the Markov Chain Monte Carlo orbit code orvara to fit 15 years of radial velocities and relative astrometry (including recent GRAVITY measurements), absolute astrometry from Hipparcos and Gaia, and a single relative radial velocity measurement between β Pic A and b. We measure model-independent masses of
M
Jup for β Pic b and 8.3 ± 1.0 M
Jup for β Pic c. These masses are robust to modest changes to the input data selection. We find a well-constrained eccentricity of 0.119 ± 0.008 for β Pic b, and an eccentricity of
for β Pic c, with the two orbital planes aligned to within ∼05. Both planets’ masses are within ∼1σ of the predictions of hot-start evolutionary models and exclude cold starts. We validate our approach on N-body synthetic data integrated using REBOUND. We show that orvara can account for three-body effects in the β Pic system down to a level ∼5 times smaller than the GRAVITY uncertainties. Systematics in the masses and orbital parameters from orvara’s approximate treatment of multiplanet orbits are a factor of ∼5 smaller than the uncertainties we derive here. Future GRAVITY observations will improve the constraints on β Pic c’s mass and (especially) eccentricity, but improved constraints on the mass of β Pic b will likely require years of additional radial velocity monitoring and improved precision from future Gaia data releases.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献