Systematic Phase Curve Study of Known Transiting Systems from Year One of the TESS Mission

Author:

Wong IanORCID,Shporer AviORCID,Daylan TansuORCID,Benneke BjörnORCID,Fetherolf TaraORCID,Kane Stephen R.ORCID,Ricker George R.ORCID,Vanderspek RolandORCID,Latham David W.ORCID,Winn Joshua N.ORCID,Jenkins Jon M.ORCID,Boyd Patricia T.ORCID,Glidden AnaORCID,Goeke Robert F.ORCID,Sha LizhouORCID,Ting Eric B.ORCID,Yahalomi DanielORCID

Abstract

Abstract We present a systematic phase curve analysis of known transiting systems observed by the Transiting Exoplanet Survey Satellite (TESS) during year one of the primary mission. Using theoretical predictions for the amplitude of the planetary longitudinal atmospheric brightness modulation, stellar ellipsoidal distortion and Doppler boosting, as well as brightness considerations to select targets with likely detectable signals, we applied a uniform data processing and light-curve modeling framework to fit the full-orbit phase curves of 22 transiting systems with planet-mass or brown dwarf companions, including previously published systems. Statistically significant secondary eclipse depths and/or atmospheric brightness modulation amplitudes were measured for HIP 65A, WASP-18, WASP-19, WASP-72, WASP-100, WASP-111, WASP-121, and WASP-122/KELT-14. For WASP-100b, we found marginal evidence that the brightest region of the atmosphere is shifted eastward away from the substellar point. We detected significant ellipsoidal distortion signals in the light curves of HIP 65A, TOI-503, WASP-18, and WASP-30, with HIP 65A, TOI-503 and WASP-18 also exhibiting Doppler boosting. The measured amplitudes of these signals agree with the predictions of theoretical models. Combining the optical secondary eclipse depths with previously published Spitzer 3.6 and 4.5 μm measurements, we derived dayside brightness temperatures and visible-light geometric albedos for a subset of the analyzed systems. We also calculated updated transit ephemerides combining the transit timings from the TESS light curves with previous literature values.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3