The Detectability of Rocky Planet Surface and Atmosphere Composition with the JWST: The Case of LHS 3844b

Author:

Whittaker Emily A.ORCID,Malik MatejORCID,Ih JegugORCID,Kempton Eliza M.-R.ORCID,Mansfield MeganORCID,Bean Jacob L.ORCID,Kite Edwin S.ORCID,Koll Daniel D. B.ORCID,Cronin Timothy W.,Hu RenyuORCID

Abstract

Abstract The spectroscopic characterization of terrestrial exoplanets over a wide spectral range from the near- to the mid-infrared will be made possible for the first time with the JWST. One challenge is that it is not known a priori whether such planets possess optically thick atmospheres or even any atmospheres altogether. However, this challenge also presents an opportunity, the potential to detect the surface of an extrasolar world. This study explores the feasibility of characterizing with the JWST the atmosphere and surface of LHS 3844b, the highest signal-to-noise rocky thermal emission target among planets that are cool enough to have nonmolten surfaces. We model the planetary emission, including the spectral signal of both the atmosphere and surface, and we explore all scenarios that are consistent with the existing Spitzer 4.5 μm measurement of LHS 3844b from Kreidberg et al. In summary, we find a range of plausible surfaces and atmospheres that are within 3σ of the observationless reflective metal-rich, iron-oxidized, and basaltic compositions are allowed, and atmospheres are restricted to a maximum thickness of 1 bar, if near-infrared absorbers at ≳100 ppm are included. We further make predictions on the observability of surfaces and atmospheres and find that a small number (∼3) of eclipse observations should suffice to differentiate between surface and atmospheric features. We also perform a Bayesian retrieval analysis on simulated JWST data and find that the surface signal may make it harder to precisely constrain the abundance of atmospheric species and may falsely induce a weak H2O detection.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3