Accretion Belt Characteristics in a Hydrodynamic Evolution of a Contact Binary

Author:

Barnett Elliot T.,Motl Patrick M.ORCID

Abstract

Abstract We compare features from the circulation model developed in Stȩpień for contact binaries to a long-term hydrodynamical evolution of a symmetric contact binary. The numerical evolution is fully three-dimensional and begins from an equilibrium structure in contact at one grid cell. As the evolution is conducted with Flow-ER, an explicit hydrodynamics code for self-gravitating fluids, we are not able to address energy transport or evolution on a thermal timescale. However, we are able to investigate the width and height of the equatorial accretion belt and the flow of material in and out of the inner Lagrange point. The flow of material between the two components arises quickly in the evolution and does not change significantly through tens of orbital periods. As the stellar components are modeled as polytropes of index 3/2 a slight numerical mass imbalance causes one component to only gain mass over the course of the simulation leading eventually to a dynamical merger of the contact binary.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3