ExoCAM: A 3D Climate Model for Exoplanet Atmospheres

Author:

Wolf Eric T.ORCID,Kopparapu RaviORCID,Haqq-Misra JacobORCID,Fauchez Thomas J.ORCID

Abstract

Abstract The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) project was initiated to compare 3D climate models that are commonly used for predicting theoretical climates of habitable zone extrasolar planets. One of the core models studied as part of THAI is ExoCAM, an independently curated exoplanet branch of the National Center for Atmospheric Research Community Earth System Model (CESM), version 1.2.1. ExoCAM has been used for studying atmospheres of terrestrial extrasolar planets around a variety of stars. To accompany the THAI project and provide a primary reference, here we describe ExoCAM and what makes it unique from standard configurations of CESM. Furthermore, we also conduct a series of intramodel sensitivity tests of relevant moist physical tuning parameters while using the THAI protocol as our starting point. A common criticism of 3D climate models used for exoplanet modeling is that cloud and convection routines often contain free parameters that are tuned to the modern Earth, and thus may be a source of uncertainty in evaluating exoplanet climates. Here, we explore sensitivities to numerous configuration and parameter selections, including a recently updated radiation scheme, a different cloud and convection physics package, different cloud and precipitation tuning parameters, and a different sea ice albedo. Improvements to our radiation scheme and the modification of cloud particle sizes have the largest effects on global mean temperatures, with variations up to ∼10 K, highlighting the requirement for accurate radiative transfer and the importance of cloud microphysics for simulating exoplanetary climates. However, for the vast majority of sensitivity tests, climate differences are small. For all cases studied, intramodel differences do not bias general conclusions regarding climate states and habitability.

Funder

NASA ∣ NASA Astrobiology Institute

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3