Low-speed Impacts into Ice–Dust Granular Mixtures

Author:

Brisset JulieORCID,Cox Christopher,Metzger Jessica,Miletich Thomas,Mohammed Nadia,Rascon Allison,Forczyk Laura,Dove Adrienne,Colwell Joshua

Abstract

Abstract We present the results of a series of laboratory low-speed impacts (< 4 m s−1) of centimeter-sized spherical projectiles into simulated dry and icy regolith samples. The target material was comprised of JSC-1 (Johnson Space Center) lunar simulant grains in the size range 100–250 μm, mixed with similar-sized water ice grains. Impacts were performed under vacuum, either at room temperature for JSC-1 samples or at cryogenic temperatures (<150 K) for icy mixtures. We measured the ejecta masses from a collection plate and impact crater dimensions from post-impact crater photographs. We find that both the ejecta masses and crater diameters followed trends predicted by established scaling laws, albeit with different fitting parameters, and we were able to fit a strength regime π scaling to our measured crater diameters. The water ice in our target material took two forms: grains mixed with the regolith grains and frost from air condensation coating regolith grains. In both cases, the presence of water ice in the sample led to lower ejected masses and smaller crater sizes. In addition, our measured crater sizes were several orders of magnitude larger than expected for impacts into solid rock or water ice. Using our measured scaling parameters, we applied our findings to a planetary context for the study of secondary craters on icy moons, as well as eroding collisions occurring in Saturn’s rings. We found that the deviation of our measurements from solid targets and from commonly used scaling parameters allowed us to reconcile our measurements with the models in both cases.

Funder

National Science Foundation

NASA Origins of Solar Systems Program

Space Florida

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3