Neptune's Spatial Brightness Temperature Variations from the VLA and ALMA

Author:

Tollefson JoshuaORCID,de Pater ImkeORCID,Molter Edward M.ORCID,Sault Robert J.ORCID,Butler Bryan J.ORCID,Luszcz-Cook StatiaORCID,DeBoer DavidORCID

Abstract

Abstract We present spatially resolved (0.″1–1.″0) radio maps of Neptune taken from the Very Large Array and Atacama Large Millimeter/submillimeter Array between 2015 and 2017. Combined, these observations probe from just below the main methane cloud deck at ∼1 bar down to the NH4SH cloud at ∼50 bar. Prominent latitudinal variations in the brightness temperature are seen across the disk. Depending on wavelength, the south polar region is 5–40 K brighter than the mid-latitudes and northern equatorial region. We use radiative transfer modeling coupled to Markov Chain Monte Carlo methods to retrieve H2S, NH3, and CH4 abundance profiles across the disk, though only strong constraints can be made for H2S. Below all cloud formation, the data are well fit by 53.8 13.4 + 18.9 × and 3.9 3.1 + 2.1 × protosolar enrichment in the H2S and NH3 abundances, respectively, assuming a dry adiabat. Models in which the radio-cold mid-latitudes and northern equatorial region are supersaturated in H2S are statistically favored over models following strict thermochemical equilibrium. H2S is more abundant at the equatorial region than at the poles, indicative of strong, persistent global circulation. Our results imply that Neptune's sulfur-to-nitrogen ratio exceeds unity, as H2S is more abundant than NH3 in every retrieval. The absence of NH3 above 50 bar can be explained either by partial dissolution of NH3 in an ionic ocean at GPa pressures or by a planet formation scenario in which hydrated clathrates preferentially delivered sulfur rather than nitrogen onto planetesimals, or a combination of these hypotheses.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3