The Brittle Boulders of Dwarf Planet Ceres

Author:

Schröder Stefan E.ORCID,Carsenty UriORCID,Hauber ErnstORCID,Raymond Carol A.ORCID,Russell Christopher T.ORCID

Abstract

Abstract We mapped all boulders larger than 105 m on the surface of dwarf planet Ceres using images of the Dawn framing camera acquired in the Low Altitude Mapping Orbit. We find that boulders on Ceres are more numerous toward high latitudes and have a maximum lifetime of 150 ± 50 Ma, based on crater counts. These characteristics are distinctly different from those of boulders on asteroid (4) Vesta, an earlier target of Dawn, which implies that Ceres’ boulders are mechanically weaker. Clues to their properties can be found in the composition of Ceres’ complex crust, which is rich in phyllosilicates and salts. As water ice is thought to be present only meters below the surface, we suggest that boulders also harbor ice. Furthermore, the boulder size–frequency distribution is best fit by a Weibull distribution rather than the customary power law, just like for Vesta boulders. This finding is robust in light of possible types of size measurement error.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3