Abstract
Abstract
We mapped all boulders larger than 105 m on the surface of dwarf planet Ceres using images of the Dawn framing camera acquired in the Low Altitude Mapping Orbit. We find that boulders on Ceres are more numerous toward high latitudes and have a maximum lifetime of 150 ± 50 Ma, based on crater counts. These characteristics are distinctly different from those of boulders on asteroid (4) Vesta, an earlier target of Dawn, which implies that Ceres’ boulders are mechanically weaker. Clues to their properties can be found in the composition of Ceres’ complex crust, which is rich in phyllosilicates and salts. As water ice is thought to be present only meters below the surface, we suggest that boulders also harbor ice. Furthermore, the boulder size–frequency distribution is best fit by a Weibull distribution rather than the customary power law, just like for Vesta boulders. This finding is robust in light of possible types of size measurement error.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献