Col-OSSOS: The Distribution of Surface Classes in Neptune's Resonances

Author:

Pike Rosemary E.ORCID,Fraser Wesley C.ORCID,Volk KathrynORCID,Kavelaars J. J.ORCID,Marsset MichaëlORCID,Peixinho NunoORCID,Schwamb Megan E.ORCID,Bannister Michele T.ORCID,Peltier LowellORCID,Buchanan Laura E.ORCID,Benecchi SusanORCID,Tan Nicole J.ORCID

Abstract

Abstract The distribution of surface classes of resonant trans-Neptunian objects (TNOs) provides constraints on the protoplanetesimal disk and giant planet migration. To better understand the surfaces of TNOs, the Colours of the Outer Solar System Origins Survey acquired multiband photometry of 102 TNOs and found that the surfaces of TNOs can be well described by two surface classifications: BrightIR and FaintIR. These classifications both include optically red members and are differentiated predominantly based on whether their near-infrared spectral slope is similar to their optical spectral slope. The vast majority of cold classical TNOs, with dynamically quiescent orbits, have the FaintIR surface classification, and we infer that TNOs in other dynamical classifications with FaintIR surfaces share a common origin with the cold classical TNOs. Comparison between the resonant populations and the possible parent populations of cold classical and dynamically excited TNOs reveal that the 3:2 has minimal contributions from the FaintIR class, which could be explained by the ν 8 secular resonance clearing the region near the 3:2 before any sweeping capture occurred. Conversely, the fraction of FaintIR objects in the 4:3 resonance, 2:1 resonance, and the resonances within the cold classical belt suggest that the FaintIR surface formed in the protoplanetary disk between ≳34.6 and ≲47 au, though the outer bound depends on the degree of resonance sweeping during migration. The presence and absence of the FaintIR surfaces in Neptune’s resonances provides critical constraints for the history of Neptune’s migration, the evolution of the ν 8, and the surface class distribution in the initial planetesimal disk.

Funder

National Aeronautics and Space Administration

UKRI ∣ STFC ∣ Central Laser Facility, Science and Technology Facilities Council

MEC ∣ Fundação para a Ciência e a Tecnologia

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3