Abstract
Abstract
The present study combines Radio and Plasma Wave Science/Langmuir Probe and Ion and Neutral Mass Spectrometer data from Cassini’s last four orbits into Saturn’s lower ionosphere to constrain the effective recombination coefficient α
300 from measured number densities and electron temperatures at a reference electron temperature of 300 K. Previous studies have shown an influx of ring material causes a state of electron depletion due to grain charging, which will subsequently affect the ionospheric chemistry. The requirement to take grain charging into account limits the derivation of α
300 to upper limits. Assuming photochemical equilibrium and using an established method to calculate the electron production rate, we derive upper limits for α
300 of ≲ 3 × 10−7 cm3 s−1 for altitudes below 2000 km. This suggests that Saturn’s ionospheric positive ions are dominated by species with low recombination rate coefficients like HCO+. An ionosphere dominated by water group ions or complex hydrocarbons, as previously suggested, is incompatible with this result, as these species have recombination rate coefficients > 5 × 10−7 cm3 s−1 at an electron temperature of 300 K.
Funder
Swedish National Space Agency
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献