Low Radio Frequency Observations from the Moon Enabled by NASA Landed Payload Missions

Author:

Burns Jack O.ORCID,MacDowall RobertORCID,Bale StuartORCID,Hallinan GreggORCID,Bassett NeilORCID,Hegedus AlexORCID

Abstract

Abstract A new era of exploration of the low radio frequency universe from the Moon will soon be underway with landed payload missions facilitated by NASA's Commercial Lunar Payload Services (CLPS) program. CLPS landers are scheduled to deliver two radio science experiments, Radio wave Observations at the Lunar Surface of the photoElectron Sheath (ROLSES) to the nearside and Lunar Surface Electromagnetics Experiment (LuSEE) to the farside, beginning in 2021. These instruments will be pathfinders for a 10 km diameter interferometric array, Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE), composed of 128 pairs of dipole antennas proposed to be delivered to the lunar surface later in the decade. ROLSES and LuSEE, operating at frequencies from ≈100 kHz to a few tens of megahertz, will investigate the plasma environment above the lunar surface and measure the fidelity of radio spectra on the surface. Both use electrically short, spiral-tube deployable antennas and radio spectrometers based upon previous flight models. ROLSES will measure the photoelectron sheath density to better understand the charging of the lunar surface via photoionization and impacts from the solar wind, charged dust, and current anthropogenic radio frequency interference. LuSEE will measure the local magnetic field and exo-ionospheric density, interplanetary radio bursts, Jovian and terrestrial natural radio emission, and the galactic synchrotron spectrum. FARSIDE, and its precursor risk-reduction six antenna-node array PRIME, would be the first radio interferometers on the Moon. FARSIDE would break new ground by imaging radio emission from coronal mass ejections (CME) beyond 2R , monitor auroral radiation from the B-fields of Uranus and Neptune (not observed since Voyager), and detect radio emission from stellar CMEs and the magnetic fields of nearby potentially habitable exoplanets.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3