Morphological and Spectral Characterization of Lunar Regolith Breakdown due to Water Ice

Author:

Shackelford A.ORCID,Donaldson Hanna K. L.,Horton M.,Noce D.

Abstract

Abstract Remote sensing observations of the Moon suggest that the lunar polar regolith environment is affected by several natural processes that may cause the regolith in these regions to become more porous and fine particulate. One of these processes may be the mechanical breakdown of regolith particles through the interaction of water ice and regolith by frost wedging. We present morphological and spectral analyses of high-fidelity lunar regolith simulants LHS-1 (lunar highlands simulant-1) and LMS-1 (lunar mare simulant-1) that have been exposed to varying concentrations of water ice (1, 10, and 30 wt%) over extended periods of time (1, 3, and 6 months) to evaluate the extent at which lunar regolith may be weathered by ice-regolith interactions in the Moon’s polar regions. To characterize changes in regolith particle morphology, we explored grain size and shape parameters with the CILAS ExpertShape suite and characterized the abundance and evolution of clinging fines with scanning electron microscopy and energy dispersive X-ray spectroscopy. Reflectance spectra were taken from 1.0–22.5 μm (444.4–10,000 cm−1) to characterize any differences in spectral features that may occur as a result of regolith breakdown. Both the morphological and spectral investigations display trends that show simulant particle degradation as a function of composition, increasing water concentration, and freezing time. Our study demonstrates that the lunar regolith is susceptible to mechanical breakdown in the presence of water ice and that water ice is likely a contributor to the weathering environment within permanently shadowed regions on the lunar surface.

Funder

NASA ∣ Solar System Exploration Research Virtual Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3