Human-assisted Sample Return Mission at the Schrödinger Basin, Lunar Far Side, Using a New Geologic Map and Rover Traverses

Author:

Czaplinski E. C.ORCID,Harrington E. M.ORCID,Bell S. K.ORCID,Tolometti G. D.ORCID,Farrant B. E.ORCID,Bickel V. T.ORCID,Honniball C. I.ORCID,Martinez S. N.ORCID,Rogaski A.,Sargeant H. M.ORCID,Kring D. A.ORCID

Abstract

Abstract The Schrödinger basin on the south polar lunar far side has been highlighted as a promising target for future exploration. This report provides a high-resolution geologic map in the southwest peak-ring (SWPR) area of the Schrödinger basin, emphasizing structural features and detailed mapping of exposed outcrops within the peak ring. Outcrops are correlated with mineralogical data from the Moon Mineralogical Mapper instrument. Geologic mapping reveals a complex structural history within the basin through a system of radially oriented faults. Further, the geologic map shows both faulted and magmatic contacts between peak-ring mineralogies, providing both structural and magmatic context for understanding lunar crustal evolution and polar region processes. To investigate these relationships and address key scientific concepts and goals from the National Research Council (NRC) report, we propose three traverse paths for a robotic sample return mission in the SWPR area. These traverses focus on addressing the highest priority science concepts and goals by investigating known outcrops with diverse mineralogical associations and visible contacts among them. Coinciding with the preparation for the 2024 Artemis III mission, NASA is increasing the priority of robotic exploration at the lunar south pole before the next crewed mission to the Moon. Through mapping the Schrödinger SWPR, we identified the extent of different lunar crustal mineralogies, inferred their geologic relationships and distribution, and pinpointed traversable routes to sample spectrally diverse outcrops and outcrop-derived boulders. The SWPR region is therefore a promising potential target for future exploration, capable of addressing multiple high-priority lunar science goals.

Funder

NASA Solar System Exploration Research Virtual Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3