Geologic Context of the OSIRIS-REx Sample Site from High-resolution Topography and Imaging

Author:

Barnouin O. S.ORCID,Jawin E. R.ORCID,Daly R. T.ORCID,Ballouz R.-L.ORCID,Daly M. G.ORCID,Seabrook J. A.,Michel P.ORCID,Zhang Y.ORCID,Johnson C. L.ORCID,Walsh K. J.ORCID,Al Asad M. M.ORCID,Gaskell R.ORCID,Weirich J.ORCID,Palmer E.ORCID,Bierhaus E. B.ORCID,Nolan M. C.ORCID,Wolner C. W. V.,Lauretta D. S.ORCID

Abstract

Abstract The OSIRIS-REx spacecraft collected a surface sample from Hokioi crater (55.8° N, 42.3° E; diameter ∼20 m) on the asteroid Bennu in 2020 October. We explore the geology of the sample collection site, known as Nightingale, by using digital terrain models, relative albedo maps, and images collected by the OSIRIS-REx spacecraft. Hokioi crater sits at the northwest edge of an older, larger (120 m diameter) crater between two north–south ridges respectively located at roughly 0° and 90° longitude, between which unconsolidated material generally migrates from the geopotential high at the north (+Z) pole to the geopotential low at the equator. The impact that formed Hokioi crater exposed relatively unweathered, fine-grained dark material that we observe within and ejected beyond the crater. The regional slope and steep crater walls to the north of the Nightingale site have enabled a mix of the dark debris and brighter material (which may include carbonates and/or exogenic basalts) surrounding Hokioi crater to migrate onto the crater floor, where the sample was collected; some of this material may be old ejecta excavated from up to 10 m depth when the 120 m diameter crater formed. We therefore expect the OSIRIS-REx sample to include materials of varying brightnesses, compositions, and exposure ages, derived primarily from the 0°–90° longitude quadrant and from as deep as 10 m. The sample may also include material derived from the impactor that formed Hokioi crater. We expect it to have low cohesion (≪0.6 Pa) and a friction angle between 32° and 39°.

Funder

NASA ∣ Marshall Space Flight Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3