Development of a 90–600 MHz Meter-wave Solar Radio Spectrometer

Author:

Chang 常 ShuWang 树旺,Wang 王 Bing 冰,Lu 路 Guang 光ORCID,Shen 申 YuPeng 玉鹏,Bai 白 Yu 宇,Shang 尚 ZiQian 自乾,Zhang 张 Lei 磊,Wu 武 Zhao 昭ORCID,Su 苏 YanRui 艳蕊,Chen 陈 Yao 耀ORCID,Yan 严 FaBao 发宝ORCID

Abstract

Abstract Radio observation is important for understanding coronal mass ejections (CMEs), coronal shock waves, and high-energy electron acceleration. Here, we developed a new Chashan broadband solar radio spectrometer at a meter wavelength for observing the (super)fine structure of the solar radio burst spectrum. In the signal-receiving unit, we adopt an antenna system consisting of a 12 m large-aperture parabolic reflector and dual-line polarized logarithmic periodic feed source, as well as a high-precision Sun-tracking turntable system, all of which ensure the high-precision acquisition of solar radiation signals. For the digital receiver, we use a high-speed analog-to-digital converter with a sampling rate of 1.25 GSPS to directly sample the signal amplified and filtered by the analog receiver, simplifying the structure of the analog receiver, and design a 16k-point fast Fourier transform algorithm in the field programmable gate array to perform time–frequency transformation on the sampled signals. The default frequency and temporal resolution of the system are 76.294 kHz and 0.839 ms (up to 0.21 ms), respectively. The noise coefficient of the system is less than 1 dB, the dynamic range is more than 60 dB, and the sensitivity is as high as 1 sfu. We have observed a large number of radio bursts, including type I radio storms, hundreds of type III, ∼20 type II, and ∼15 type IV bursts in the past year. These high-quality data are useful in the further study of CMEs and associated particle acceleration and the origins of solar radio bursts.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3