Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe’s First Two Orbits

Author:

Desai M. I.ORCID,Mitchell D. G.ORCID,Szalay J. R.ORCID,Roelof E. C.,Giacalone J.,Hill M. E.ORCID,McComas D. J.ORCID,Christian E. R.ORCID,Schwadron N. A.ORCID,McNutt Jr. R. L.,Wiedenbeck M. E.,Joyce C.ORCID,Cohen C. M. S.,Ebert R. W.ORCID,Dayeh M. A.ORCID,Allen R. C.ORCID,Davis A. J.,Krimigis S. M.,Leske R. A.ORCID,Matthaeus W. H.ORCID,Malandraki O.,Mewaldt R. A.,Labrador A.,Stone E. C.,Bale S. D.ORCID,Pulupa M.ORCID,MacDowall R. J.ORCID,Kasper J. C.ORCID

Abstract

Abstract The Integrated Science Investigation of the Sun (IS⊙IS) suite on board NASA’s Parker Solar Probe (PSP) observed six distinct enhancements in the intensities of suprathermal-through-energetic (∼0.03–3 MeV nucleon−1) He ions associated with corotating or stream interaction regions (CIR or SIR) during its first two orbits. Our results from a survey of the time histories of the He intensities, spectral slopes, and anisotropies and the event-averaged energy spectra during these events show the following: (1) In the two strongest enhancements, seen at 0.35 and 0.85 au, the higher-energy ions arrive and maximize later than those at lower energies. In the event seen at 0.35 au, the He ions arrive when PSP was away from the SIR trailing edge and entered the rarefaction region in the high-speed stream. (2) The He intensities either are isotropic or show sunward anisotropies in the spacecraft frame. (3) In all events, the energy spectra between ∼0.2 and 1 MeV nucleon−1 are power laws of the form ∝E −2. In the two strongest events, the energy spectra are well represented by flat power laws between ∼0.03 and 0.4 MeV nucleon−1 modulated by exponential rollovers between ∼0.4 and 3 MeV nucleon−1. We conclude that the SIR-associated He ions originate from sources or shocks beyond PSP’s location rather than from acceleration processes occurring at nearby portions of local compression regions. Our results also suggest that rarefaction regions that typically follow the SIRs facilitate easier particle transport throughout the inner heliosphere such that low-energy ions do not undergo significant energy loss due to adiabatic deceleration, contrary to predictions of existing models.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3