Classification of Chandra X-Ray Sources in Cygnus OB2

Author:

Kashyap Vinay L.ORCID,Guarcello Mario G.ORCID,Wright Nicholas J.,Drake Jeremy J.ORCID,Flaccomio EttoreORCID,Aldcroft Tom L.,Albacete Colombo Juan F.ORCID,Briggs Kevin,Damiani FrancescoORCID,Drew Janet E.,Martin Eduardo L.ORCID,Micela GiusiORCID,Naylor TimORCID,Sciortino SalvatoreORCID

Abstract

Abstract We have devised a predominantly Naive Bayes−based method to classify X-ray sources detected by Chandra in the Cygnus OB2 association into members, foreground objects, and background objects. We employ a variety of X-ray, optical, and infrared characteristics to construct likelihoods using training sets defined by well-measured sources. Combinations of optical photometry from the Sloan Digital Sky Survey (riz) and Isaac Newton Telescope Photometric Hα Survey (r I i I Hα), infrared magnitudes from United Kingdom Infrared Telescope Deep Sky Survey and Two-Micron All Sky Survey (JHK), X-ray quantiles and hardness ratios, and estimates of extinction A v are used to compute the relative probabilities that a given source belongs to one of the classes. Principal component analysis is used to isolate the best axes for separating the classes for the photometric data, and Gaussian component separation is used for X-ray hardness and extinction. Errors in the measurements are accounted for by modeling as Gaussians and integrating over likelihoods approximated as quartic polynomials. We evaluate the accuracy of the classification by inspection and reclassify a number of sources based on infrared magnitudes, the presence of disks, and spectral hardness induced by flaring. We also consider systematic errors due to extinction. Of the 7924 X-ray detections, 5501 have a total of 5597 optical/infrared matches, including 78 with multiple counterparts. We find that ≈6100 objects are likely association members, ≈1400 are background objects, and ≈500 are foreground objects, with an accuracy of 96%, 93%, and 80%, respectively, with an overall classification accuracy of approximately 95%.

Funder

Chandra X-ray Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3