Thermodynamic and Magnetic Topology Evolution of the X1.0 Flare on 2021 October 28 Simulated by a Data-driven Radiative Magnetohydrodynamic Model

Author:

Guo J. H.ORCID,Ni Y. W.ORCID,Zhong Z.ORCID,Guo Y.ORCID,Xia C.ORCID,Li H. T.ORCID,Poedts S.ORCID,Schmieder B.ORCID,Chen P. F.ORCID

Abstract

Abstract Solar filament eruptions, flares, and coronal mass ejections (CMEs) are manifestations of drastic releases of energy in the magnetic field, which are related to many eruptive phenomena, from the Earth’s magnetosphere to black hole accretion disks. With the availability of high-resolution magnetograms on the solar surface, observational data-based modeling is a promising way to quantitatively study the underlying physical mechanisms behind observations. By incorporating thermal conduction and radiation losses in the energy equation, we develop a new data-driven radiative magnetohydrodynamic model, which has the capability of capturing the thermodynamic evolution compared to our previous zero-β model. Our numerical results reproduce the major observational characteristics of the X1.0 flare on 2021 October 28 in NOAA active region 12887, including the morphology of the eruption, the kinematics of the flare ribbons, extreme ultraviolet (EUV) radiations, and the two components of the EUV waves predicted by the magnetic stretching model, i.e., a fast-mode shock wave and a slower apparent wave, due to successive stretching of the magnetic field lines. Moreover, some intriguing phenomena are revealed in the simulation. We find that flare ribbons separate initially and ultimately stop at the outer stationary quasi-separatrix layers (QSLs). Such outer QSLs correspond to the border of the filament channel and determine the final positions of flare ribbons, which can be used to predict the size and the lifetime of a flare before it occurs. In addition, the side views of the synthesized EUV and white-light images exhibit typical three-part structures of CMEs, where the bright leading front is roughly cospatial with the nonwave component of the EUV wave, reinforcing the use of the magnetic stretching model for the slow component of EUV waves.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3