Designing an Optimal LSST Deep Drilling Program for Cosmology with Type Ia Supernovae

Author:

Gris PhilippeORCID,Regnault NicolasORCID,Awan HumnaORCID,Hook IsobelORCID,Jha Saurabh W.ORCID,Lochner MichelleORCID,Sanchez BrunoORCID,Scolnic Dan,Sullivan MarkORCID,Yoachim PeterORCID,

Abstract

Abstract The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) is forecast to collect a large sample of Type Ia supernovae (SNe Ia) expected to be instrumental in unveiling the nature of dark energy. The feat, however, requires accurately measuring the two components of the Hubble diagram, distance modulus and redshift. Distance is estimated from SN Ia parameters extracted from light-curve fits, where the average quality of light curves is primarily driven by survey parameters. An optimal observing strategy is thus critical for measuring cosmological parameters with high accuracy. We present in this paper a three-stage analysis to assess the impact of the deep drilling (DD) strategy parameters on three critical aspects of the survey: redshift completeness, the number of well-measured SNe Ia, and cosmological measurements. We demonstrate that the current DD survey plans (internal LSST simulations) are characterized by a low completeness (z ∼ 0.55–0.65), and irregular and low cadences (several days), which dramatically decrease the size of the well-measured SN Ia sample. We propose a method providing the number of visits required to reach higher redshifts. We use the results to design a set of optimized DD surveys for SN Ia cosmology taking full advantage of spectroscopic resources for host galaxy redshift measurements. The most accurate cosmological measurements are achieved with deep rolling surveys characterized by a high cadence (1 day), a rolling strategy (at least two seasons of observation per field), and ultradeep (z ≳ 0.8) and deep (z ≳ 0.6) fields. A deterministic scheduler including a gap recovery mechanism is critical to achieving a high-quality DD survey.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spitzer-selected z > 1.3 protocluster candidates in the LSST Deep Drilling Fields;Monthly Notices of the Royal Astronomical Society;2023-12-19

2. Type Ia supernova observations combining data from the Euclid mission and the Vera C. Rubin Observatory;Monthly Notices of the Royal Astronomical Society;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3