A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation

Author:

Yuan ZunliORCID,Zhang Xibin,Wang Jiancheng,Cheng XiangmingORCID,Wang Wenjie

Abstract

Abstract We propose a generalization of our previous kernel density estimation (KDE) method for estimating luminosity functions (LFs). This new upgrade further extends the application scope of our KDE method, making it a very flexible approach that is suitable to deal with most bivariate LF calculation problems. From the mathematical point of view, usually the LF calculation can be abstracted as a density estimation problem in the bounded domain of { Z 1 < z < Z 2 , L > f lim ( z ) } . We use the transformation-reflection KDE method ( ϕ ˆ ) to solve the problem, and introduce an approximate method ( ϕ ˆ 1 ) based on one-dimensional KDE to deal with the small sample size case. In practical applications, the different versions of LF estimators can be flexibly chosen according to the Kolmogorov–Smirnov test criterion. Based on 200 simulated samples, we find that for both cases of dividing or not dividing redshift bins, especially for the latter, our method performs significantly better than the traditional binning method ϕ ˆ bin . Moreover, with the increase of sample size n, our LF estimator converges to the true LF remarkably faster than ϕ ˆ bin . To implement our method, we have developed a public, open-source Python toolkit, called kdeLF. With the support of kdeLF, our KDE method is expected to be a competitive alternative to existing nonparametric estimators, due to its high accuracy and excellent stability. kdeLF is available online at GitHub with further extensive documentation available.

Funder

National Natural Science Foundation of China

Yunnan Natural Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3