Abstract
Abstract
Glycolaldehyde (GA) has been observed toward several different sources, with a broad range of rotational temperatures (8–300 K). At the high end, the temperature is comparable to the energy of the lowest vibrational states of GA, making the vibrational contribution to the partition function significant. Here, we report an analysis of the high-resolution far-infrared spectrum of GA, which features a plethora of well-resolved lines from 170–430 cm−1 (13–5 THz). We focus on the three fundamental vibrational bands in this range, i.e., the symmetric ν
12 bend at 282 cm−1, and the asymmetric ν
17 and ν
18 torsions at 360 and 208 cm−1, respectively. We assigned 23,266 transitions to 13,999 lines within these bands, which, when combined with the previously reported microwave and millimeter-wave spectra, allowed for refinement of the vibrationally excited rotational constants, and accurate determination of their band origins. Additionally, the assignment of a number of lines in several hot bands that are significantly populated at 300 K allowed for determination of their band origins. The rotational constants reported here should be useful in searches of vibrationally excited GA toward warm sources, and the accurately determined band origins allow for refinement of the vibrational partition function, and therefore column density, for a given excitation temperature.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献