Statistical Recovery of 21 cm Visibilities and Their Power Spectra with Gaussian-constrained Realizations and Gibbs Sampling

Author:

Kennedy FraserORCID,Bull PhilipORCID,Wilensky Michael J.ORCID,Burba JacobORCID,Choudhuri SamirORCID

Abstract

Abstract Radio interferometers designed to probe the 21 cm signal from Cosmic Dawn and the Epoch of Reionization must contend with systematic effects that make it difficult to achieve sufficient dynamic range to separate the 21 cm signal from foreground emission and other effects. For instance, the instrument’s chromatic response modulates the otherwise spectrally smooth foregrounds, making them difficult to model, while a significant fraction of the data must be excised due to the presence of radio-frequency interference, leaving gaps in the data. Errors in modeling the (modulated and gappy) foregrounds can easily generate spurious contamination of what should otherwise be 21 cm signal-dominated modes. Various approaches have been developed to mitigate these issues by, for example, using nonparametric reconstruction of the foregrounds, in-painting the gaps, and weighting the data to reduce the level of contamination. We present a Bayesian statistical method that combines these approaches, using the coupled techniques of Gaussian-constrained realizations and Gibbs sampling. This provides a way of drawing samples from the joint posterior distribution of the 21 cm signal modes and their power spectrum in the presence of gappy data and an uncertain foreground model in a computationally scalable manner. The data are weighted by an inverse covariance matrix that is estimated as part of the inference, along with a foreground model that can then be marginalized over. We demonstrate the application of this technique on a simulated Hydrogen Epoch of Reionization Array–like delay spectrum analysis, comparing three different approaches for accounting for the foreground components.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

UKRI ∣ STFC ∣ Central Laser Facility, Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3