Deep Learning of Dark Energy Spectroscopic Instrument Mock Spectra to Find Damped Lyα Systems

Author:

Wang BenORCID,Zou JiaqiORCID,Cai ZhengORCID,Prochaska J. XavierORCID,Sun ZechangORCID,Ding JianiORCID,Font-Ribera Andreu,Gonzalez Alma,Herrera-Alcantar Hiram K.ORCID,Irsic VidORCID,Lin XiaojingORCID,Brooks DavidORCID,Chabanier SoléneORCID,Belsunce Roger de,Palanque-Delabrouille NathalieORCID,Tarle GregoryORCID,Zhou Zhimin

Abstract

Abstract We have updated and applied a convolutional neural network (CNN) machine-learning model to discover and characterize damped Lyα systems (DLAs) based on Dark Energy Spectroscopic Instrument (DESI) mock spectra. We have optimized the training process and constructed a CNN model that yields a DLA classification accuracy above 99% for spectra that have signal-to-noise ratios (S/N) above 5 per pixel. The classification accuracy is the rate of correct classifications. This accuracy remains above 97% for lower S/N ≈1 spectra. This CNN model provides estimations for redshift and H i column density with standard deviations of 0.002 and 0.17 dex for spectra with S/N above 3 pixel−1. Also, this DLA finder is able to identify overlapping DLAs and sub-DLAs. Further, the impact of different DLA catalogs on the measurement of baryon acoustic oscillations (BAO) is investigated. The cosmological fitting parameter result for BAO has less than 0.61% difference compared to analysis of the mock results with perfect knowledge of DLAs. This difference is lower than the statistical error for the first year estimated from the mock spectra: above 1.7%. We also compared the performances of the CNN and Gaussian Process (GP) models. Our improved CNN model has moderately 14% higher purity and 7% higher completeness than an older version of the GP code, for S/N > 3. Both codes provide good DLA redshift estimates, but the GP produces a better column density estimate by 24% less standard deviation. A credible DLA catalog for the DESI main survey can be provided by combining these two algorithms.

Funder

the Direc, Office of Science, Office of High Energy Physics of the U.S Department of Energy

U.S National Science Foundation, Division of Astronomical Sciences

National Key R&D Program of China

National Science Foundation of China

Program Ranmon y Cajal of the Spanish Ministry of Science and Innovation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMB lensing and Lyα forest cross bispectrum from DESI’s first-year quasar sample;Physical Review D;2024-09-03

2. Cosmological constraints from the eBOSS Lyman-α forest using the PRIYA simulations;Journal of Cosmology and Astroparticle Physics;2024-07-01

3. Detection of Mg II Absorption Lines Using Convolutional Neural Networks;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

4. Optimal 1D Ly α forest power spectrum estimation – III. DESI early data;Monthly Notices of the Royal Astronomical Society;2024-01-16

5. Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument;The Astronomical Journal;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3