Abstract
Abstract
We have updated and applied a convolutional neural network (CNN) machine-learning model to discover and characterize damped Lyα systems (DLAs) based on Dark Energy Spectroscopic Instrument (DESI) mock spectra. We have optimized the training process and constructed a CNN model that yields a DLA classification accuracy above 99% for spectra that have signal-to-noise ratios (S/N) above 5 per pixel. The classification accuracy is the rate of correct classifications. This accuracy remains above 97% for lower S/N ≈1 spectra. This CNN model provides estimations for redshift and H i column density with standard deviations of 0.002 and 0.17 dex for spectra with S/N above 3 pixel−1. Also, this DLA finder is able to identify overlapping DLAs and sub-DLAs. Further, the impact of different DLA catalogs on the measurement of baryon acoustic oscillations (BAO) is investigated. The cosmological fitting parameter result for BAO has less than 0.61% difference compared to analysis of the mock results with perfect knowledge of DLAs. This difference is lower than the statistical error for the first year estimated from the mock spectra: above 1.7%. We also compared the performances of the CNN and Gaussian Process (GP) models. Our improved CNN model has moderately 14% higher purity and 7% higher completeness than an older version of the GP code, for S/N > 3. Both codes provide good DLA redshift estimates, but the GP produces a better column density estimate by 24% less standard deviation. A credible DLA catalog for the DESI main survey can be provided by combining these two algorithms.
Funder
the Direc, Office of Science, Office of High Energy Physics of the U.S Department of Energy
U.S National Science Foundation, Division of Astronomical Sciences
National Key R&D Program of China
National Science Foundation of China
Program Ranmon y Cajal of the Spanish Ministry of Science and Innovation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献