General Physical Properties of Fermi Blazars

Author:

Chen 陈 Yongyun 永云ORCID,Gu 顾 Qiusheng 秋生,Fan 樊 Junhui 军辉ORCID,Yu 俞 Xiaoling 效龄,Zhong 钟 Xiaogu 晓谷,Liu 刘 Hongyu 红宇,Ding 丁 Nan 楠ORCID,Xiong 熊 Dingrong 定荣ORCID,Guo 郭 Xiaotong 晓通

Abstract

Abstract We study the general physical properties of Fermi blazars using the Fermi fourth source catalog data (4FGL-DR2). The quasi-simultaneous multiwavelength data of Fermi blazars are fitted by using the one-zone leptonic model to obtain some physical parameters, such as jet power, magnetic field, and Doppler factor. We study the distributions of the derived physical parameters as a function of black hole mass and accretion disk luminosity. The main results are as follows. (1) For a standard thin accretion disk, the jet kinetic power of most flat-spectrum radio quasars can be explained by the Blandford–Payne (BP) mechanism. However, the jet kinetic power of most BL Lacertae objects (BL Lacs) cannot be explained by either the Blandford–Znajek mechanism or the BP mechanism. The BL Lacs may have advection-dominated accretion flows surrounding their massive black holes. (2) After excluding the redshift, there is a moderately strong correlation between the jet kinetic power and jet radiation power and the accretion disk luminosity for Fermi blazars. These results confirm a close connection between jet and accretion. The jet kinetic power is slightly larger than the accretion disk luminosity for Fermi blazars. (3) There is a significant correlation between jet kinetic power and gamma-ray luminosity and radio luminosity for Fermi blazars, which suggests that gamma-ray luminosity and radio luminosity can be used to indicate the jet kinetic power.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3