Power-law Distribution of Solar Cycle–modulated Coronal Jets

Author:

Liu 刘 Jiajia 佳佳ORCID,Song 宋 Anchuan 安川ORCID,Jess David B.ORCID,Zhang JieORCID,Mathioudakis MihalisORCID,Soós SzabolcsORCID,Keenan Francis P.ORCID,Wang 汪 Yuming 毓明ORCID,Erdélyi RobertusORCID

Abstract

Abstract Power-law distributions have been studied as a significant characteristic of nonlinear dissipative systems. Since discovering the power-law distribution of solar flares that was later extended to nanoflares and stellar flares, it has been widely accepted that different scales of flares share the same physical process. Here we present the newly developed semiautomated jet identification algorithm and its application for detecting more than 1200 off-limb solar jets during Solar Cycle 24. Power-law distributions have been revealed between the intensity/energy and frequency of these events, with indices found to be analogous to those for flares and coronal mass ejections (CMEs). These jets are also found to be spatially and temporally modulated by the solar cycle, forming a butterfly diagram in their latitudinal-temporal evolution, experiencing quasi-annual oscillations in their analyzed properties, and very likely gathering in certain active longitudinal belts. Our results show that coronal jets display the same nonlinear behavior as that observed in flares and CMEs, in solar and stellar atmospheres, strongly suggesting that they result from the same nonlinear statistics of scale-free processes as their counterparts in different scales of eruptive events. Although these jets, like flares and other large-scale dynamic phenomena, are found to be significantly modulated by the solar cycle, their corresponding power-law indices still remain similar.

Funder

Frontier Science Research Program of Deep Space Exploration Laboratory

The Informatization Plan of Chinese Academy of Sciences

NSFC ∣ China National Funds for Distinguished Young Scientists

Leverhulme Trust

UKRI ∣ Science and Technology Facilities Council

CAS Strategic Priority Program

National Natural Science Foundation of China

UKRI | STFC

National Space Technology Programme (NSTP) Technology for Space Science

Nemzeti Kutatási, Fejlesztési ś Innovaciós Hivatal, Országos Tudományos Kutatási Alap

Royal Society

CAS Presidents International Fellowship Initiative

National Aeronautics and Space Administration

Innovációs és Technológiai Minisztérium

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3