Failures of Minimum Variance Analysis in Diagnosing Planar Structures in Space

Author:

Liu Y. Y.ORCID,Cao J. B.ORCID,Fu H. S.ORCID,Wang Z.ORCID,Guo Z. Z.ORCID,He R. J.

Abstract

Abstract Minimum variance analysis of the magnetic field (MVAB), among various techniques of planar structure analysis, is most widely used for its numerical simplicity and loose requirements for data. Through a large number of studies based on MVAB, a global picture of the solar wind intermittency has been established. However, the huge discrepancy between the results from MVAB and other techniques like timing/triangulation implies that the uncertainty of MVAB is a crucial issue that is not fully understood. Utilizing Cluster data, we establish a data set comprised of 6752 discontinuities, whose orientations are precisely determined by timing, as a benchmark for testing MVAB. We find that the scatter of the MVAB normals around the timing normal can be reduced by elevating the threshold for the eigenvalue ratio λ 2/λ 3 and narrowing the data window to which MVAB is applied. The misidentification of discontinuities with B N / B < 0.4, Δ∣ B ∣/∣ B ∣ < 0.2 as rotational discontinuities (RDs, identified by B N / B > 0.4, Δ∣ B ∣/∣ B ∣ < 0.2) is proved to be a major and inherent defect of MVAB, which can occur even when λ 2/λ 3 is large. Such a misidentification process is revealed to be related to a special discontinuity geometry. It also explains the false RD predominance reported by previous studies based on MVAB. Finally, we provide advice for the application of MVAB and discuss the possibility of obtaining the real statistical properties of interplanetary discontinuities by using MVAB.

Funder

MOST ∣ National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3