Large-scale Spatial Cross-calibration of Hinode/SOT-SP and SDO/HMI

Author:

Fouhey David F.ORCID,Higgins Richard E. L.ORCID,Antiochos Spiro K.ORCID,Barnes GrahamORCID,DeRosa Marc L.ORCID,Hoeksema J. ToddORCID,Leka K. D.ORCID,Liu YangORCID,Schuck Peter W.ORCID,Gombosi Tamas I.ORCID

Abstract

Abstract We investigate the cross-calibration of the Hinode/Solar Optical Telescope-Spectro-Polarimeter (SOT-SP) and Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) instrument metadata, specifically the correspondence of the scaling and pointing information. Accurate calibration of these data sets gives the correspondence needed by interinstrument studies and learning-based magnetogram systems, and is required for physically meaningful photospheric magnetic field vectors. We approach the problem by robustly fitting geometric models on correspondences between images from each instrument’s pipeline. This technique is common in computer vision, but several critical details are required when using scanning-slit spectrograph data like Hinode/SOT-SP. We apply this technique to data spanning a decade of the Hinode mission. Our results suggest corrections to the published Level 2 Hinode/SOT-SP data. First, an analysis on approximately 2700 scans suggests that the reported pixel size in Hinode/SOT-SP Level 2 data is incorrect by around 1%. Second, analysis of over 12,000 scans shows that the pointing information is often incorrect by dozens of arcseconds with a strong bias. Regression of these corrections indicates that thermal effects have caused secular and cyclic drift in Hinode/SOT-SP pointing data over its mission. We offer two solutions. First, direct coalignment with SDO/HMI data via our procedure can improve alignments for many Hinode/SOT-SP scans. Second, since the pointing errors are predictable, simple post-hoc corrections can substantially improve the pointing. We conclude by illustrating the impact of this updated calibration on derived physical data products needed for research and interpretation. Among other things, our results suggest that the pointing errors induce a hemispheric bias in estimates of radial current density.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Lockheed Martin

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3