A Blueprint for the Milky Way’s Stellar Populations. V. 3D Local Dust Extinction

Author:

An DeokkeunORCID,Beers Timothy C.ORCID,Chiti AnirudhORCID

Abstract

Abstract Using a grid of empirically calibrated synthetic spectra developed in our previous study, we construct an all-sky 3D extinction map from the large collection of low-resolution XP spectra in Gaia DR3. Along each line of sight, with an area ranging from 0.2 to 13.4 deg2, we determine both the reddening and metallicity of main-sequence stars and model the foreground extinction up to approximately 3 kpc from the Sun. Furthermore, we explore variations in the total-to-selective extinction ratio in our parameter search and identify its mean systematic change across diverse cloud environments in both hemispheres. In regions outside the densest parts of the clouds, our reddening estimates are validated through comparisons with previous reddening maps. However, a notable discrepancy arises in comparison to other independent work based on XP spectra, which can be attributed to systematic offsets in their metallicity estimates. On the other hand, our metallicity scale exhibits reasonable agreement with the high-resolution spectroscopic abundance scale. We also assess the accuracy of the XP spectra by applying our calibrated models, and we confirm an increasing trend of flux overestimation at shorter wavelengths below 400 nm.

Funder

National Research Foundation of Korea

Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements

US National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3