Photometric Metallicity Prediction of Fundamental-mode RR Lyrae Stars in the Gaia Optical and K s Infrared Wave Bands by Deep Learning

Author:

Dékány IstvánORCID,Grebel Eva K.ORCID

Abstract

Abstract RR Lyrae stars are useful chemical tracers thanks to the empirical relationship between their heavy-element abundance and the shape of their light curves. However, the consistent and accurate calibration of this relation across multiple photometric wave bands has been lacking. We have devised a new method for the metallicity estimation of fundamental-mode RR Lyrae stars in the Gaia optical G and near-infrared VISTA K s wave bands by deep learning. First, an existing metallicity prediction method is applied to large photometric data sets, which are then used to train long short-term memory recurrent neural networks for the regression of the [Fe/H] to the light curves in other wave bands. This approach allows an unbiased transfer of our accurate, spectroscopically calibrated I-band formula to additional bands at the expense of minimal additional noise. We achieve a low mean absolute error of 0.1 dex and high R 2 regression performance of 0.84 and 0.93 for the K s and G bands, respectively, measured by cross-validation. The resulting predictive models are deployed on the Gaia DR2 and VVV inner bulge RR Lyrae catalogs. We estimate mean metallicities of −1.35 dex for the inner bulge and −1.7 dex for the halo, which are significantly less than the values obtained by earlier photometric prediction methods. Using our results, we establish a public catalog of photometric metallicities of over 60,000 Galactic RR Lyrae stars and provide an all-sky map of the resulting RR Lyrae metallicity distribution. The software code used for training and deploying our recurrent neural networks is made publicly available in the open-source domain.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3