Scalar Quadratic Maximum-likelihood Estimators for the CMB Cross-power Spectrum

Author:

Chen JimingORCID,Ghosh ShamikORCID,Zhao WenORCID

Abstract

Abstract Estimating the cross-correlation power spectra of the cosmic microwave background, in particular, the TB and EB spectra, is important for testing parity symmetry in cosmology and diagnosing insidious instrumental systematics. The quadratic maximum-likelihood (QML) estimator provides optimal estimates of the power spectra, but it is computationally very expensive. The hybrid pseudo-C estimator is computationally fast but performs poorly on large scales. As a natural extension of previous work, in this article, we present a new unbiased estimator based on the Smith–Zaldarriaga (SZ) approach of EB separation and the scalar QML approach to reconstruct the cross-correlation power spectrum, called the QML-SZ estimator. Our new estimator relies on the ability to construct scalar maps, which allows us to use a scalar QML estimator to obtain the cross-correlation power spectrum. By reducing the pixel number and algorithm complexity, the computational cost is nearly one order of magnitude smaller and the running time is nearly two orders of magnitude faster in the test situations.

Funder

MOST ∣ National Key Research and Development Program of China

National Natural Science Foundation of China

MOE ∣ Fundamental Research Funds for the Central Universities

Key Research Program of the Chinese Academy of Sciences

the science research grants from the China Manned Space Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3