Solar Flare Prediction Based on the Fusion of Multiple Deep-learning Models

Author:

Tang RongxinORCID,Liao WentiORCID,Chen ZhouORCID,Zeng XunwenORCID,Wang Jing-song,Luo BingxianORCID,Chen Yanhong,Cui Yanmei,Zhou Meng,Deng Xiaohua,Li Haimeng,Yuan Kai,Hong Sheng,Wu Zhiping

Abstract

Abstract Solar flare formation mechanisms and their corresponding predictions have commonly been difficult topics in solar physics for decades. The traditional forecasting method manually constructs a statistical relationship between the measured values of solar active regions and solar flares that cannot fully utilize the information related to solar flares contained in observational data. In this article, we first used neural-network methods driven by the measured magnetogram and magnetic characteristic parameters of the sunspot group to learn the prediction model and predict solar flares. The prediction fusion model is based on a deep neural network, convolutional neural network, and bidirectional long short-term memory neural network and can predict whether a sunspot group will have a flare event above class M or class C in the next 24 or 48 hr. The real skill statistics (TSS) and F1 scores were used to evaluate the performances of our fusion model. The test results clearly show that this fusion model can make full use of the information related to solar flares and combine the advantages of each independent model to capture the evolution characteristics of solar flares, which is a much better performance than traditional statistical prediction models or any single machine-learning method. We also proposed two frameworks, namely F1_FFM and TSS_FFM, which optimize the F1 score and TSS score, respectively. The cross validation results show that they have their respective advantages in the F1 score and TSS score.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3