Spacecraft Floating Potential Measurements for the Wind Spacecraft

Author:

Wilson III Lynn B.ORCID,Salem Chadi S.ORCID,Bonnell John W.ORCID

Abstract

Abstract Analysis of 8,804,545 electron velocity distribution functions, observed by the Wind spacecraft near 1 au between 2005 January 1 and 2022 January 1, was performed to determine the spacecraft floating potential, ϕ sc. Wind was designed to be electrostatically clean, which helps keep the magnitude of ϕ sc small (i.e., ∼5–9 eV for nearly all intervals) and the potential distribution more uniform. We observed spectral enhancements of ϕ sc at frequencies corresponding to the inverse synodic Carrington rotation period with at least three harmonics. The two-dimensional histogram of ϕ sc versus time also shows at least two strong peaks, with a potential third, much weaker peak. These peaks vary in time, with the intensity correlated with solar maximum. Thus, the spectral peaks and histogram peaks are likely due to macroscopic phenomena like coronal mass ejections (solar cycle dependence) and stream interaction regions (Carrington rotation dependence). The values of ϕ sc are summarized herein and the resulting data set is discussed.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3