Characteristics of Kepler Eclipsing Binaries Displaying a Significant O’Connell Effect

Author:

Knote Matthew F.ORCID,Caballero-Nieves Saida M.ORCID,Gokhale VayujeetORCID,Johnston Kyle B.ORCID,Perlman Eric S.ORCID

Abstract

Abstract The O’Connell effect—the presence of unequal maxima in eclipsing binaries—remains an unsolved riddle in the study of close binary systems. The Kepler space telescope produced high-precision photometry of nearly 3000 eclipsing binary systems, providing a unique opportunity to study the O’Connell effect in a large sample and in greater detail than in previous studies. We have characterized the observational properties—including temperature, luminosity, and eclipse depth—of a set of 212 systems (7.3% of Kepler eclipsing binaries) that display a maxima flux difference of at least 1%, representing the largest sample of O’Connell effect systems yet studied. We explored how these characteristics correlate with each other to help understand the O’Connell effect’s underlying causes. We also describe some system classes with peculiar light-curve features aside from the O’Connell effect (∼24% of our sample), including temporal variation and asymmetric minima. We found that the O’Connell effect size’s correlations with period and temperature are inconsistent with Kouzuma's starspot study. Up to 20% of systems display the parabolic eclipse timing variation signal expected for binaries undergoing mass transfer. Most systems displaying the O’Connell effect have the brighter maximum following the primary eclipse, suggesting a fundamental link between which maximum is brighter and the O’Connell effect’s physical causes. Most importantly, we find that the O’Connell effect occurs exclusively in systems where the components are close enough to significantly affect each other, suggesting that the interaction between the components is ultimately responsible for causing the O’Connell effect.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3