The Impact of Effective Matter Mixing Based on Three-dimensional Hydrodynamical Models on the Molecule Formation in the Ejecta of SN 1987A

Author:

Ono MasaomiORCID,Nozawa Takaya,Nagataki ShigehiroORCID,Kozyreva AlexandraORCID,Orlando SalvatoreORCID,Miceli Marco,Chen Ke-JungORCID

Abstract

Abstract To investigate the impact of matter mixing on the formation of molecules in the ejecta of SN 1987A, time-dependent rate equations for chemical reactions are solved for one-zone and one-dimensional (1D) ejecta models of SN 1987A. The latter models are based on the 1D profiles obtained by angle-averaging of the three-dimensional (3D) hydrodynamical models, which effectively reflect the 3D matter mixing; the impact is demonstrated, for the first time, based on 3D hydrodynamical models. The distributions of initial seed atoms and radioactive 56Ni influenced by the mixing could affect the formation of molecules. By comparing the calculations for spherical cases and for several specified directions in the bipolar-like explosions in the 3D hydrodynamical models, the impact is discussed. The decay of 56Ni, practically 56Co at later phases, could heat the gas and delay the molecule formation. Additionally, Compton electrons produced by the decay could ionize atoms and molecules and could destroy molecules. Several chemical reactions involved with ions such as H+ and He+ could also destroy molecules. The mixing of 56Ni plays a nonnegligible role in both the formation and destruction of molecules through the processes above. The destructive processes of carbon monoxide and silicon monoxide due to the decay of 56Ni generally reduce the amounts. However, if the molecule formation is sufficiently delayed under a certain condition, the decay of 56Ni could locally increase the amounts through a sequence of reactions.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3