Very Local Interstellar Medium Revealed by a Complete Solar Cycle of Interstellar Neutral Helium Observations with IBEX

Author:

Swaczyna P.ORCID,Kubiak M. A.ORCID,Bzowski M.ORCID,Bower J.ORCID,Fuselier S. A.ORCID,Galli A.ORCID,Heirtzler D.,McComas D. J.ORCID,Möbius E.ORCID,Rahmanifard F.ORCID,Schwadron N. A.ORCID

Abstract

Abstract The IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) mission samples interstellar neutral (ISN) helium atoms penetrating the heliosphere from the very local interstellar medium (VLISM). In this study, we analyze the IBEX-Lo ISN helium observations covering a complete solar cycle, from 2009 through 2020 using a comprehensive uncertainty analysis including statistical and systematic sources. We employ the Warsaw Test Particle Model to simulate ISN helium fluxes at IBEX, which are subsequently compared with the observed count rate in the three lowest energy steps of IBEX-Lo. The χ 2 analysis shows that the ISN helium flows from ecliptic λ , β = ( 255 59 ± 0 23 , 5 14 ± 0 08 ) , with speed v HP = 25.86 ± 0.21 km s−1 and temperature T HP = 7450 ±140 K at the heliopause. Accounting for gravitational attraction and elastic collisions, the ISN helium speed and temperature in the pristine VLISM far from the heliopause are v VLISM = 25.9 km s−1 and T VLISM = 6150 K, respectively. The time evolution of the ISN helium fluxes at 1 au over 12 yr suggests significant changes in the IBEX-Lo detection efficiency, higher ionization rates of ISN helium atoms in the heliosphere than assumed in the model, or an additional unaccounted for signal source in the analyzed observations. Nevertheless, we do not find any indication of the evolution of the derived parameters of ISN helium over the period analyzed. Finally, we argue that the continued operation of IBEX-Lo to overlap with the Interstellar Mapping and Acceleration Probe will be pivotal in tracking possible physical changes in the VLISM.

Funder

National Aeronautics and Space Administration

National Science Centre (NCN), Poland

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3