A New Discrete Implicit Monte Carlo Scheme for Simulating Radiative Transfer Problems

Author:

Steinberg EladORCID,Heizler Shay I.ORCID

Abstract

Abstract We present a new algorithm for radiative transfer—based on a statistical Monte Carlo approach—that does not suffer from teleportation effects, on the one hand, and yields smooth results, on the other hand. Implicit Monte Carlo (IMC) techniques for modeling radiative transfer have existed from the 1970s. When they are used for optically thick problems, however, the basic algorithm suffers from “teleportation” errors, where the photons propagate faster than the exact physical behavior, due to the absorption-blackbody emission processes. One possible solution is to use semianalog Monte Carlo, in its new implicit form (ISMC), which uses two kinds of particles, photons and discrete material particles. This algorithm yields excellent teleportation-free results, but it also produces noisier solutions (relative to classic IMC), due to its discrete nature. Here, we derive a new Monte Carlo algorithm, Discrete Implicit Monte Carlo (DIMC), which also uses the idea of two kinds of discrete particles, and thus does not suffer from teleportation errors. DIMC implements the IMC discretization and creates new radiation photons for each time step, unlike ISMC. Using the continuous absorption technique, DIMC yields smooth results like classic IMC. One of the main elements of the algorithm is the avoidance of the explosion of the particle population, by using particle merging. We test the new algorithm on 1D and 2D cylindrical problems, and show that it yields smooth, teleportation-free results. We finish by demonstrating the power of the new algorithm on a classic radiative hydrodynamic problem—an opaque radiative shock wave. This demonstrates the power of the new algorithm for astrophysical scenarios.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3