LSST Survey Strategy in the Galactic Plane and Magellanic Clouds

Author:

Street R. A.ORCID,Li X.ORCID,Khakpash S.ORCID,Bellm E.ORCID,Girardi L.ORCID,Jones L.ORCID,Abrams N. S.ORCID,Tsapras Y.ORCID,Hundertmark M. P. G.,Bachelet E.ORCID,Gandhi P.ORCID,Szkody P.ORCID,Clarkson W. I.ORCID,Szabó R.ORCID,Prisinzano L.ORCID,Bonito R.ORCID,Buckley D. A. H.,Marais J. P.,Di Stefano R.ORCID

Abstract

Abstract Galactic science encompasses a wide range of subjects in the study of the Milky Way and Magellanic Clouds, from young stellar objects to X-ray binaries. Mapping these populations, and exploring transient phenomena within them, are among the primary science goals of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. While early versions of the survey strategy dedicated relatively few visits to the Galactic Plane region, more recent strategies under consideration envision a higher cadence within selected regions of high scientific interest. The range of galactic science presents a challenge in evaluating which strategies deliver the highest scientific returns. Here we present metrics designed to evaluate Rubin survey strategy simulations, based on the cadence of observations they deliver within regions of interest to different topics in galactic science, using variability categories defined by timescale. We also compare the fractions of exposures obtained in each filter with those recommended for the different science goals. We find that the baseline_v2.x simulations deliver observations of the high-priority regions at sufficiently high cadence to reliably detect variability on timescales >10 days or more. Follow-up observations may be necessary to properly characterize variability, especially transients, on shorter timescales. Combining the regions of interest for all the science cases considered, we identify those areas of the Galactic Plane and Magellanic Clouds of highest priority. We recommend that these refined survey footprints be used in future simulations to explore rolling cadence scenarios, and to optimize the sequence of observations in different bandpasses.

Funder

Heising-Simons Foundation

National Science Foundation

NASA

Deutsche Forschungsgemeinschaft

INAF

Hungarian Academy of Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3