Bits Missing: Finding Exotic Pulsars Using bfloat16 on NVIDIA GPUs

Author:

White JackORCID,Adámek KarelORCID,Roy JayantaORCID,Dimoudi SofiaORCID,Ransom Scott M.ORCID,Armour WesleyORCID

Abstract

Abstract The Fourier domain acceleration search (FDAS) is an effective technique for detecting faint binary pulsars in large radio astronomy data sets. This paper quantifies the sensitivity impact of reducing numerical precision in the graphics processing unit (GPU)-accelerated FDAS pipeline of the AstroAccelerate (AA) software package. The prior implementation used IEEE-754 single-precision in the entire binary pulsar detection pipeline, spending a large fraction of the runtime computing GPU-accelerated fast Fourier transforms. AA has been modified to use bfloat16 (and IEEE-754 double-precision to provide a “gold standard” comparison) within the Fourier domain convolution section of the FDAS routine. Approximately 20,000 synthetic pulsar filterbank files representing binary pulsars were generated using SIGPROC with a range of physical parameters. They have been processed using bfloat16, single-precision, and double-precision convolutions. All bfloat16 peaks are within 3% of the predicted signal-to-noise ratio of their corresponding single-precision peaks. Of 14,971 “bright” single-precision fundamental peaks above a power of 44.982 (our experimentally measured highest noise value), 14,602 (97.53%) have a peak in the same acceleration and frequency bin in the bfloat16 output plane, while in the remaining 369 the nearest peak is located in the adjacent acceleration bin. There is no bin drift measured between the single- and double-precision results. The bfloat16 version of FDAS achieves a speedup of approximately 1.6× compared to single-precision. A comparison between AA and the PRESTO software package is presented using observations collected with the GMRT of PSR J1544+4937, a 2.16 ms black widow pulsar in a 2.8 hr compact orbit.

Funder

UKRI ∣ Engineering and Physical Sciences Research Council

UKRI ∣ Science and Technology Facilities Council

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Posit and floating-point based Izhikevich neuron: A Comparison of arithmetic;Neurocomputing;2024-09

2. Design Exploration of Fault-Tolerant Deep Neural Networks Using Posit Number Representation System;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-07

3. Reduced-resolution beamforming: Lowering the computational cost for pulsar and technosignature surveys;Publications of the Astronomical Society of Australia;2024

4. Accelerating Dedispersion Using Many-core Architectures;The Astrophysical Journal Supplement Series;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3